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I. INTRODUCTION

Investigators in many fields are often confronted with research

problems in which a large number of factors (i.e., independent var-

iables) must be considered. In such cases the first step in experi-

mentation is usually the identification of the most important factors,

so that future research may be concentrated on the major factors.

Accordingly we often want to conduct an efficient preliminary screening

experiment aimed at determining the subset of important factors.

One resource-efficient screening strategy is two-stage group

screening. In this method, introduced by Watson (1961), the individ-

ual factors (each at two levels) are partitioned into groups, forming

group factors. By assigning the same level to all componenet factors

within each group, the group factors are tested as if they were single

factors. All factors within groups found to have significant effects

are then tested individually in a second-stage experiment.

A key assumption in Watson's development of group screening is

that the directions of all effects are known or can be correctly assumed,

a priori. With this assumption, factor levels can be assigned so that

all effects are in the same direction. Thus, there is no chance

of cancellation of effects (within a group). This assumption, how-

ever, is unlikely to hold exactly in practice. Consequently one

may hesitate to use a group screening design because important effects

may cancel if assumed effect directions are wrong.

In a previous paper, we [Mauro and Smith (1982)] examined the

extent to which cancellation affects the performance of two-stage



group screening designs when the response is observed without random

error (i.e., when the error standard deviation G is equal to zero).

In the present paper we extend this work to the case a > 0. As part

of our investigation we have developed a computer-aided search routine

to select an optimal (in a sense to be defined later) group screening

plan. As in our earlier paper, we use the multifactorial designs of

Plackett and Burman (1946) to analyze the results of the first and

second stages.
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II. ASSUMPTIONS AND NOTATION

Suppose K factors are to be screened for their effects on the

response. For detecting the factors having major effects, it is

usually sufficient to assume a first-order model:

K

Y 0 + E + ix ij + '1 (2.1)

where yi is the ith response, 0 is a constant term common to every

response, (j > 1) is the linear effect of the jt- factor, x = ±I

th th th
is the level of the jI- factor in the 1-- run, and c. is the i---1

error term. We make the following additional assumptions:

1. k - 1 (k unknown) of the K factors are active (i.e.,
have a true effect) and (K-k) are inactive,

2. all active factors have the same absolute effect,
A > 0, that is,

A, if factor j is active

= O, if factor j is inactive,

3. the error terms {c I are independent and normally
distributed with mean zero and unknown variance o2.

We let 3(i) for i=O,1,2,...,k denote the effects arrangement in

which i effects equal -A, (k-i) effects equal +A, and (K-k) effects

equal 0. The B(0) [or $(k)] case, therefore, corresponds to the

situation where all active effects are in the same direction. Further-

more, in the version of two-stage group screening we consider, we

assume that the K factors are partitioned randomly into G groups of

size g; if K is not a multiple of g, we assume that the group sizes

-3-



are taken as "evenly" as possible. Concerning our assumptions, we

note that random grouping and equal absolute effects maximize the

chance of cancellation. Thus, with regard to studying the cancell-

ation effect, our assumptions define "worst case" conditions.

For reasons of economy and to avoid design saturation (i.e.,

no degrees of freedom to estimate o), we employ at both stages of

screening the smallest Plackett-Burman (PB) design that has at least

one error degree of freedom. Since PB designs are only available

for numbers of runs that are multiples of four, the number of first-

stage runs N1 required to test the G group factors will therefore

be B(G+1) where

B(x) = x + 4 - x(mod 4). (2.2)

Similarly, if S denotes the number of factors that reach the second

stage, then the number of second-stage runs N2 will be B(S+I). Thus,

the total number of runs R required by both stages of group screening

will be N + N2 = B(G+1) + B(S+1). We note that because S is random,

so is R.

Regarding formal significance testing, the results of the first

and second stages can be analyzed by the usual analysis of variance

procedures for factorial experiments. We denote the significance

levels of the (two-sided) t tests performed at the end of the first

and second stages by a1 and a 2 1 respectively. Our version of two-

stage group screening, therefore, is completely determined by g,

a,9 and a2 Accordingly, we will denote such a strategy by

GS(g, alp a 2). In the next section we show how the quantities g,

a ' and a2 affect the performance of the GS(g, all a2 ) strategy.
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III. PERFORMANCE EVALUATION

We can define three separate measures of performance. These

are:

Power. We denote by A the number of active factors that
are detected correctly, and we define

EA = 100E(A)/k (3.1)

as a percentage measure of the "power" of a GS strategy
for detecting the active factors.

Type I Error. We denote by U the number of inactive
factors that are declared active (important), and we define

EU = IOOE(U)/(K-k) (3.2)

as a percentage measure of Type I error (i.e., declaring
active an inactive factor).

Relative Testing Cost. We define relative testing cost

ER = 100E(R)/B(K+I) (3.3)

as the ratio,expressed as a percentage, of the expected
number of runs required by a GS strategy to the number of
runs required by the smallest PB design for K factors that
has at least one error degree of freedom.

A larger value of EAt a smaller value of Eu, or a smaller value

of ER indicates better performance on the average, but all three mea-

sures should be considered in assessing and comparing the performance

of GS(g, iC 2 ) strategies. In general, selecting a suitable GS(g,

(IA a2 ) strategy will require that trade-offs be made between EA, EU,

and ER' In many ways our problem is like the testing of a statistical

hypothesis in which we want the sample size (relative testing cost)

and Type I error to be small but the power to be large.
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In the Appendix we derive the expected values of A, U, and R for

any K, k, a(i), g, al, a2, and signal-to-noise ratio A/c . Using these

results we developed a computer program that gives the performance

properties of alternative GS(g, al, a2 ) strategies. To illustrate its

use, we applied our program to two case studies, which we will refer

to as Study A and Study B. In Study A we evaluated EA* EU, and ER

when K=60, k=8, A/o= 1,3,- and = 6(0), a(4) for g=3 and 6, a I=.01,

.05, .10 and a 2= 01, .05, .10 . In Study B we evaluated EA9 EU, and

ER when K=240, k=32, A/u = 1, 3, - and 3 = (0),(16) for the same g,

aI, a2 combinations considered in Study A. We chose to consider just

the a(0) and ([k/2]) cases because of the symmetry between the (i)

and a(k-i) arrangements. Moreover, the probability of group-factor

effect cancellation is maximized in the ([k/2]) case. The results

obtained for Studies A and B are shown in Tables 1A and 1B, respectively.

In Tables IA and 1B we give the limiting values of ER, EA, and EU

as A/ - - (>00). We note that these results are not directly com-

parable to those given by Mauro and Smith (1982) under the assumption

that c=0. The zero and nonzero error cases are fundamentally different

since when a=0 the testing process is totally deterministic.

It is intuitive that an increase in a 1 or a2 will increase both

EA and E U * An increase in a will also increase the expected number

of runs made, thus the relative testing cost ER. However, ER does

not depend on a2, a fact that will be important to us in later discussion.

The actual extent of these movements for our two case studies can be

seen from Tables 1A and 1B.
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We can further add that as A1 -*. 0, the probability of detecting

any group effect approaches zero. Thus, in this case, EA + 0, EU - 0,

and ER 100,, where y = B(G+1)/B(K+I). As ,- 1 , all groups will

be found to have a significant effect with probability one, in which

case the second stage simply becomes a PB experiment for all K factors

in B(K+I) runs; thus, EU 2' EA + TPB' and ER - lO0(l+y), where YPB

is the corresponding power for detecting an effect of magnitude A

in the associated PB design. Corresponding limits as a -+ 0 or 1 are

less interesting.

As noted in Tables IA and IB, performance values enclosed by

parentheses were obtained in the B([k/2]) case; those directly preceding

the parentheses are corresponding values that were obtained in the E(0)

case. Any differences between these values, therefore, are due to the

cancellation effect. Since the chance of canc iation is zero in

the 3(0) case and at a maximum in the ((k/2]) case, these differences

specify the maximum effect of cancellatiou on performance.

An examination of the results shows that of the three performance

measures considered, E is the most sensitive to the cancellation
A

effect. In some of the cases considered E[Al 3([k/2])] is 70% of

E[Al 3(0)]. Further, although we would tend to use fewer runs as

the chance of cancellation increases [ec.ivalently, as i increases

from 0 to [k/2] in 3(i)], this apparent advantage is offset by the

fact that we would also tend to detect fewer active factors.

In Studies A and B the proportion of factors that are active

(i.e., k/K) is the same. Mauro and Smith (1982) found that in the

deterministic case ((7=0) power and relative testing cost are

-9-



essentially a function of k/K and 3(i/k). Inspection of Tables

IA and IB clearly shows that this result does not hold when a > 0.

Thus, in this case, it will be necessary to consider each (K,k)

combination separately.

An important practical consideration in the use of a GS strategy

is the number of error degrees of freedom (e.d.f.) for testing group

effects in the first stage. For testing G groups in a PB design

having B(G+1) runs, e.d.f. = B(G+I) -(G+I), and thus, 1 < e.d.f. < 4.

When e.d.f. = 1 the efficiency of the PB design can be extremely poor.

See, for example, the case with K=60 and g=6 in Table IA. In such

cases a more reasonable strategy may be to employ a larger PB design

or to use one less group and partition the factors as "evenly" as

possible. Such considerations would also apply in the second stage

where e.d.f. = B(S+I) - (S+I). At this stage, however, a reasonable

alternative for increasing e.d.f. may be to combine effects into a

pooled error estimate.

We make one final observation. Tables IA and IB suggest that

EU is directly proportional to a2 in a GS(g, alp a2 ) strategy. Indeed,

using (A.2) and (A.5) in the Appendix, we see that

EU = 100*ct 2 *P {an inactive factor reaches the second stage} (3,4)

We will make use of this fact in the next section.

-10-
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IV. SEARCH ROUTINE

To select a GS strategy, the experimenter must specify the group

size g and the significance levels of the first and second stage tests,

c Iand a 2 * In general there are no obvious choices for g, al. and '2" In

order to choose the best strategy for a particular application, trade-

offs will need to be made between ERs EA, and EU . In this section we

present a computer-aided search routine to help select a "good" GS

strategy. The search program is written in standard FORTRAN and is

available upon request from the authors.

In order to use the search routine, the experimenter must first

specify a maximum tolerable relative testing cost, say E*, and a maximum

tolerable Type I error, say E*. Subject to E < E* and E < E*, the
U R - R U - U

search algorithm determines, for various group sizes, the values of

a and a2 that maximize power (EA). From the program output, the group

size which gives the greatest power may then be selected. The basic

steps in the search algorithm are outlined in Table 2.

Step 4 of the algorithm makes use of the fact the ER is an increasing

function in a and does not depend on a 2 " The a2 defined by Step 5 can

be quickly determined from (3.4). Further, the overall logic of the al-

gorithm is based on the premise that power increases as relative testing

cost increases.

Table 3 containes sample computer printout from the search routine

for the case K=60, k=8, A/c=2, E*=50%, and E*=5%. Asterisks appearing
'R U

in the printout signify a case (i.e., group size) in which the value of

E at a-=0 equals or exceeds E*. In Table 3, for instance, when g=2
R R



Step 1. Input values for K, k, and A/a

Step 2. Input maximum tolerable values for ER and EU*

Step 3. Assume P(O) case and g=2.

Step 4. Determine a so that ER attains maximum allowable value.

Step 5. For the aI determined in Step 4, determine the a
that maximizes EU subject to constraint specifieg
in Step 2.

Step 6. Calculate EA and EU for given GS(g,a1 ,cx2) strategy.

Step 7. Repeat Steps 4, 5, and 6 as long as g < min(8, K/2).

Step 8. Reset g=2 and repeat Steps 4 through 7 for P([k/2])

case.

Table 2. Outline of Two-Stage Group Screening

Search Algorithm

-12-
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the first-stage PB experiment requires 32 runs, thus leaving no runs

available for the second-stage follow-up experiment.

The search routine is based on the performance results derived in

the Appendix, which are only applicable when K is a multiple of g. There-

fore, for group sizes where this restriction is not met, the program re-

defines K as the nearest multiple of g and denotes the new value as KSTAR.

Performance results are then calculated as if there are KSTAR factors to

be screened. It seems reasonable that these results should be comparable

to the true performance had the K factors been partitioned as "evenly"

as possible.

As a final observation, we note that if the group sizes considered

in Table 3 are ranked according to their corresponding power, the ranking

is the same in the a(O) and 6(4) cases. We have found this phenomenon to

be generally true for the different cases we have looked at. Greater

power, of course, is attained in the (O) case, when no cancellation can

occur.

The search routine presented in this section provides guidance in

using and selecting a satisfactory GS strategy. The routine supplies the

user with quantitative information needed to determine whether two-stage

group screening is suitable for a particular application.
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V. SUMMARY AND REMARKS

In this paper we examine the performance characteristics of two-

stage group screening experiments, extending the previous work of Mauro

and Smith (1982). The analysis in Section III indicates the extent to

which the choice of group size and of the significance levels of the

first and second stage tests affect performance. We evaluate perfor-

mance as a function of a constant signal-to-noise ratio for all active

(i.e., nonzero) factors, assuming random grouping and a first-order

model.

In screening experiments an experimenter may hesitate to use group

screening because important effects may cancel if not all effect di-

rections are known. A key feature in our development is that we make

no presumption concerning effect direction, only effect magnitude. In

fact, the assumptions of random grouping and equal absolute effects

define "worst case" conditions with regard to possible cancellation of

effects.

In general, the efficacy of group screening in a given application

must be based on trade-offs between factor classification and testing

cost. To facilitate this process we have developed a computer-aided

search routine which addresses this problem. The results of this paper

can be used as a practical guide in decisions about the possible use

and choice of a two-stage group screening strategy.

-15-



APPENDIX

Part 1. Introduction

Without loss of generality, let (i) denote the case in which

=132 =...=i= -A , l=i+2= ...= k= +A , and k+l' k+=...8- =0.

Suppose that K=gG where g denotes the group size and G denotes the

number of groups. We define A and U as in (3.1) and (3.2). We

now define
n f, if the j-h factor is in a group that

shows a significant effect in the
R Ij = first stage

0, otherwise

1, if the j- factor shows a significant

R2j = effect in the second stage

0, otherwise.

In a GS(g, alt C12 ) strategy, the j-h factor is declared important

only if both Rj =1 and R 2j=1. Accordingly, we define D j=RJR2j and

observe that A = Z D. and U = Z D.. The number of factors S that

J<k J  j>k J K

reach the second stage is given by S = Z R
j=R

Because of symmetry we can write

E[AIj(i)] = iE[D 1I$(i)] + (k-i)E[Di+iI1(i)]

= iE[D 1 1B(i)] + (k-i)E[Dlj6(k-i)]. (A.1)

Similarly

EfUI8(i)] = (K-k)EiD k+ I 1(i) ], (A.2)

-16-



and

E[Sj. (i)j = iE[R11j.(i)] + (k-i)E[R 11 18(k-i)]

+ (K-k)E[R Ik+lI-(i)]. (A.3)

Further,

E[Dlj. (i)] - P[R 11=118 (i)]P[R 21=1 jR11=l,$Ci)], (A.4)

and

E[D k+I 1 (i)] = P[Rl1k+=L. (i)c 2. (A.5)

Thus, to evaluate the expectations of A, U, and S it suffices to

evaluate P[R 1j=116(i)] for J=1 and Jk+1 and evaluate P[R 2 j= IJR j=11 B(iI

for J=1.

Regarding the expected total runs,

E(R) = B(G+1) + E[B(S+1)] .(A.6)

Using the approximation B(x) -= x+2.5, we have

E[RjB(i)] a B(G+1) + 3.5 + E[Sj. (i)]. (A.7)

Note that IB(x) - (x+2.5)1 < 1.5.

Part 2. Derivation of the Probability that an Active Factor Reaches
Second Stage

Without loss of generality suppose that factor #1l is placed into

group #1 and assume that l~i'ck. Now, given that factor #11 (61= -A)

is placed into group #1, there are (i-I) effects of -A, (k-i) effects

of +A, and (K-k) zero effects left to be distributed into groups.

We define

=~;;x N{IT n(6)1> t~n;ci/2)) (A.8)

-17-



F,-

where T (6) denotes a random variable having a noncentral t distributionn

with n degrees of freedom and noncentrality parameter 6, and where

t(n;a/2) denotes the upper 100(1-a/2) percentage point of "Student's"

t distribution with n degrees of freedom.

It is not difficult to see that

J M
P[R 11=1B(i)] = E E p(j,m)Y(fl;6(jm);Ol), (A.9)

j=0 m=0

where J = min(g-1, i-i), M = min(g-1-J, k-i), f = N I-G-1, N = B(G+l),

6(jm) = ov-1 (m-j-l)A/a, and

p (j,m) = ( ig--j-m g-i (A.10)

The quantity p(j,m) defined in (A.1O) is the probability that j effects

of -A and m effects of +A fall into group #1 along with factor #1.

The Y quantity appearing in (A.9) is the power of the t-test associated

with group #1 given that (J+l) effects of -A , m effects of +A , and

(g-1-j-m) zero effects are placed in group #1.

Part 3. Derivation of the Probability that an Inactive Factor Reaches
Second Stage

To derive P[Rl,k+l=116(i) we can repeat the argument of Part 2

for the (k+l)st factor (ak+1=0). Doing so, we obtain

J* M*
P[R l,k+1-l[6(i)] E Z p*(J,m)Y(f 1;6*(J,m);tl ), (A.11I)

J=O m=0

where J* - min(g-1,i), M* = min(g-l-J, k-i), 6*(J,m) = vF' I(m-J)A/o, and

-18-



p*(j'tn) j ( mki g-1-j-m. g-1 (A. 12)

Part 4. Derivation of the Probability that an Active Factor that
Reaches Second Stage is Declared Important

We let H denote the number of groups in the first stage that show

a significant effect. Note that SgH, so that E(H) = E(S)/g. The

expected value of S can be computed per (A.3), (A.9), and (A.11).

We can write

G
P[R 2 ClJR 11= l,a(i)I = h i[1=hR1 1  2 ~~)][ 1 = I~,R1=1

(A.13)

The second factor within the summation in (A..13) can be evaluated as

P[R 2 1= 1!H=h, R 11=1,a(i)] = Pf 2 (h);,'2 (h);ot 2) (A.14)

where f 2 (h)= B(hg+1) - (hg+1) and 2 (h) = -[B(hg+l)] A/c. The

conditional distribution of H given R IC1 and 6(i) is intractable,

however. The authors have found that the conditional distribution of

H required in (A.13) can be reasonably approximated as Y+1 where Y is

a binomially distributed random variable with parameters (G-1) and

success probability =E(H)IG = E(S)/K. Thus

G
P(Rl =I!R =i 1 (i) - P(Y-h-I)4-(f 2 (h); 2 (h);a 2) (A.15)

21 11h=1

whe re Y b (G- I~)
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Many experimental situations require consideration of a large number

of factors. For example, computer simulation studies are frequently

characterized by the inclusion of an exceptionally large number of input
variables. Because of resource limitations, there is often a need in such

situations for an efficient method of factor screening. One possible

screening strategy is two-stage group screening. This report attempts to

examine the performance characteristics of two-stage group screening
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experiments as a function of a constant signal-to-noise ratio for all
important factors. The effect of group-factor cancellation on performance
is also investigated.
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